
GigaScience

Refgenie: a reference genome resource manager
--Manuscript Draft--

Manuscript Number: GIGA-D-19-00289R1

Full Title: Refgenie: a reference genome resource manager

Article Type: Technical Note

Funding Information: National Institute of General Medical
Sciences
(1R35GM128636-01)

Dr. Nathan C. Sheffield

Abstract: Reference genome assemblies are essential for high-throughput sequencing analysis
projects. Typically, genome assemblies are stored on disk alongside related resources;
for example, many sequence aligners require the assembly to be *indexed*. The
resulting indexes are broadly applicable for downstream analysis, so it makes sense to
share them. However, there is no simple tool to do this. To this end, we introduce
refgenie, a reference genome assembly asset manager. Refgenie makes it easier to
organize, retrieve, and share genome analysis resources. In addition to genome
indexes, refgenie can manage any files related to reference genomes, including
sequences and annotation files. Refgenie includes a command-line interface and a
server application that provides a RESTful API, so it is useful for both tool development
and analysis.

 Availability: https://refgenie.databio.org

Corresponding Author: Nathan C. Sheffield

UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: Michał Stolarczyk

First Author Secondary Information:

Order of Authors: Michał Stolarczyk

Vincent Reuter

Jason P. Smith

Neal Magee

Nathan C. Sheffield

Order of Authors Secondary Information:

Response to Reviewers: Response to review is included as a PDF cover letter for ease of review.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and

No

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

If not, please give reasons for any
omissions below.

 as follow-up to "Experimental design
and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

"

No experiments performed.

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

RESEARCH ARTICLE
Refgenie: a reference genome resource manager
Michał Stolarczyk1, *, Vincent P. Reuter1, *, Jason P. Smith1,4, Neal E. Magee5, and Nathan C. Sheffield1,2,3,4,�

1Center for Public Health Genomics, University of Virginia
2Department of Public Health Sciences, University of Virginia
3Department of Biomedical Engineering, University of Virginia
4Department of Biochemistry and Molecular Genetics, University of Virginia
5Research Computing, University of Virginia
*Contributed equally
� Correspondence: nsheffield@virginia.edu

Reference genome assemblies are essential for high-throughput sequencing analysis
projects. Typically, genome assemblies are stored on disk alongside related resources;
for example, many sequence aligners require the assembly to be indexed. The result-
ing indexes are broadly applicable for downstream analysis, so it makes sense to share
them. However, there is no simple tool to do this. To this end, we introduce refgenie,
a reference genome assembly asset manager. Refgenie makes it easier to organize, re-
trieve, and share genome analysis resources. In addition to genome indexes, refgenie
can manage any files related to reference genomes, including sequences and annotation
files. Refgenie includes a command-line interface and a server application that provides
a RESTful API, so it is useful for both tool development and analysis.
Availability: https://refgenie.databio.org

Background
Enormous effort goes into assembling and curating ref-
erence genomes1–5. These reference assemblies provide
a common representation for comparing results and they
form the basis for a wide range of downstream tools for
sequence alignment and annotation. Many tools that
rely on reference assemblies will produce independent
resources that accompany an assembly. For instance,
many aligners must hash the genome, creating indexes
that are used to improve alignment performance6–9.

Analytical pipelines typically rely on these aligners and
their indexes for the initial steps of a data analysis.
These assembly resources are typically shared among
many pipelines, so it’s common for a research group to
organize them in a central folder to prevent duplication.
In addition to saving disk space, centralization simplifies
sharing software that uses a reference assembly because
software can be written around a standard folder
structure. However, this does not solve the problem
of sharing genomic resources between research groups.
Because each group may use a different strategy to
identify shared genome resources, sharing tools across
groups may require modifying them.

One solution to this problem is to have a web-accessible
server where standard, organized reference assemblies
are available for download. Indeed, this is exactly the
goal of Illumina’s iGenomes project, which provides “a
collection of reference sequences and annotation files
for commonly analyzed organisms”10. The iGenomes

project has become a popular source of genome assets
and has greatly simplified sharing analysis tools among
research environments. However, this approach suffers
from some fundamental drawbacks and leaves several
challenges unsolved. First, the individual assets can only
be downloaded in bulk, but what if a particular use case
requires only a small subset of resources in a package?
More important, building the resources is not scripted,
so if the repository excludes a reference or resource of
interest, there is no programmatic way to fill the gap.
In these scenarios, users must manually build and orga-
nize genome assets individually, forfeiting the strength
of standardization among groups.

To improve the ability to share interoperable reference
genome assets, we have developed refgenie, which en-
ables a more modular, customizable, and user-controlled
approach to managing reference assembly resources.
Like iGenomes, refgenie standardizes reference genome
asset organization so software can be built around that
organization. But unlike iGenomes, refgenie also auto-
mates the building of genome assets, so that an identical
representation can be produced for any genome assem-
bly. Furthermore, refgenie allows programmatic access
to individual resources both remote and local, making
it suitable for the next generation of self-contained
pipelines.

Refgenie can organize any files that can be assigned to
a particular reference genome assembly, which could in-
clude not only genome indexes, but other resource types

1· Refgenie, a reference genome manager · Databio · c©The Authors

Manuscript Click here to access/download;Manuscript;manuscript.pdf

Click here to view linked References

mailto:nsheffield@virginia.edu
https://refgenie.databio.org
https://www.editorialmanager.com/giga/download.aspx?id=83977&guid=43fa2c61-162d-4f99-82b6-366c82a38d67&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=83977&guid=43fa2c61-162d-4f99-82b6-366c82a38d67&scheme=1
https://www.editorialmanager.com/giga/viewRCResults.aspx?pdf=1&docID=3040&rev=1&fileID=83977&msid=621d5ce9-dc64-4db7-a002-dec78f9c30b0

serve

genome
assets

archived
assets

FASTA
file

build archive

web API

pull

server tasks
CLI tasks

FASTA
file

refgenie
CLI

refgenie
server

Refgenconf

imports imports

user interface

software interface

A B
Components

Fig. 1: Refgenie concept and software organization. A: Refgenie provides the ability to either build or pull assets. B: Refgenie is
tripartite, made up of a conf utility, a command-line interface (CLI), and a server package. The configuration package is intended
for programmatic use, and is used by the CLI and server packages. Users and software use refgenie via the CLI or server (web API).

like genome sequences and annotations11–13.

Refgenie manages genome-related resources flexibly. It
can handle any asset type, from annotations to indexes.
It provides individual, pre-built asset downloads from a
server and allows scripted building for custom inputs.
Refgenie thus solves a major hurdle in biological data
analysis.

Results and discussion
Refgenie is the first full-service reference genome asset
manager. Refgenie provides two ways to obtain genome
assets: pull, and build (Fig.1A). For common assets,
pulling a pre-built version obviates the need to install
and run specialized software to build a particular asset.
It also makes it easier to satisfy prerequisites program-
matically for pipelines and other software. However,
remote-hosted assets are only practical for common
genomes and assets, so for uncommon assets or on
unconnected computers, users may instead build assets,
which creates the same standard output for custom
genomes. By providing both build and pull, refgenie
facilitates asset organization both within and between
research groups, increasing interoperability of tools that
rely on genome resources.

Asset organization

Refgenie uses a local YAML file called the genome config-
uration file (Fig. 4) to keep track of metadata, such as
local file paths. In this file, refgenie stores paths to in-
dividual genome assembly resources, or assets, each of
which represents one or more files. You can think of a
genome asset as a folder of related files tied to a particu-
lar genome assembly. For example, an asset could be an
index for a particular tool, or a group of annotation files.
Refgenie assets are referred to using asset registry paths,

which are human-readable asset identifiers. The registry
path follows the structure {genome}/{asset}:{tag}; a
genome thus operates as a sort of namespace for a set of
assets, which are identified both by asset names as well
as tags, allowing refgenie to manage multiple versions
of the same asset.

The refgenie software suite allows users to interact
with assets with three components: 1) a command-line
interface (CLI), 2) a server, and 3) a configuration
package that supports them both (Fig.1B).

Refgenie command-line interface

The workhorse of refgenie is the command-line interface
(CLI); it is how users will typically interact with genome
assets. Its implementation as a command-line tool not
only makes it useful for general purpose exploration
and access, but also allows it to be integrated into
existing workflows that require access to genome assets
from the shell. The CLI can be installed with pip

install refgenie and invoked by calling refgenie.
The refgenie CLI provides 7 functions for interacting
with local genome assets:

• refgenie init – initializes an empty genome con-
figuration file

• refgenie list – summarizes the genome configu-
ration file, listing local genomes and assets

• refgenie seek – provides the file path to a given
asset

• refgenie add – adds an already-built local asset
• refgenie remove – removes a local asset
• refgenie tag – adds a tag to a local asset
• refgenie build – builds a new asset

2· Refgenie, a reference genome manager · Databio · c©The Authors

0:57:29

asset name
archive

sizegenome
asset
size

build
time

peak
memory

bowtie2_index hg38
hg38
hg38
hg38
hg38

hg38_cdna
hg38_cdna

hisat2_index
bismark_bt1_index
bismark_bt2_index
bwa_index

kallisto_index
salmon_index

3.5 GB
3.9 GB
7.5 GB
7.5GB
3.2 GB

1.6 GB
2.6 GB

3.9 GB
4.2 GB

13.6 GB
13.6 GB
2.9 GB

2.2 GB
3.1 GB

0:36:22
1:10:24
2:17:22
0:51:02

0:04:30
0:03:04

5.6 GB
5.5 GB

10.8 GB
10.8 GB
4.7 GB

3.8 GB
5.3 GB

fasta hg38 2.9 GB 0.8 GB 0:01:17 0 GB

hg38star_index 24.3GB26.9 GB 1:51:11 35.8 GB

hg38dbnsfp 22.8 GB22.9 GB 2:35:30 0 GB*
hg38ensembl_rb 0.01 GB0.01 GB 0:00:01 0 GB
hg38ensembl_gtf 0.06 GB0.06 GB 0:00:13 0 GB
hg38gencode_gtf 0.04 GB0.04 GB 0:00:01 0 GB
hg38feat_annotation 0.01 GB0.01 GB 0:01:55 0.1 GB
hg38refgene_anno 0.01 GB0.03 GB 0:00:30 0.2 GB

Fig.2: Assets available for build. Table listing assets that can currently be built with refgenie build, along with statistics for
size, build time, and memory high water mark. Assets were built for the human genome using a single core. Times and memory
are representative values from a single run. These assets are produced by various tools8,9,14–17 and are available to be built for any
arbitrary genome input. * peak disk space usage for dbnsfp is over 300GB

Initializing refgenie

All of the CLI commands require knowledge of the ref-
genie configuration file, which is passed via the -c argu-
ment. To install and configure refgenie requires only a
few lines of code:

pip install --user refgenie

export REFGENIE="refgenie.yaml"

refgenie init -c $REFGENIE

In this example, we populate the $REFGENIE environ-
ment variable, which eliminates the need to pass -c to
each command going forward. The init, list, add,
and remove functions are relatively straightforward and
simply allow a user to create, view, and manipulate the
genome configuration file.

Building assets

The build function allows a user to build assets for
any arbitrary inputs, which is what enables refgenie to
serve custom genomes. Refgenie has built-in capability
to build a selection of different common genome assets
(Fig.2). The list of assets with available recipes are
listed by the refgenie list command. Available assets
are built by specifying the asset registry path along with
any required inputs. For example:

refgenie build hg38/ASSET \

--INPUT FILE

Where ASSET is a unique key defining the asset of in-
terest (e.g., bowtie2 index), INPUT is an identifier for a
required input, and FILE is a path to the provided in-
put. For example, to build a fasta asset requires a com-
pressed fasta file as input. It can thus be built like this:

refgenie build hg38/fasta \

--fasta hg38.fa.gz

Building an asset can require either input arguments,
such as in this example, or it can require other assets.
The list of requirements for building an asset can be
found by adding the -r argument to the build function.
Assets are built with locally available versions of the
software (e.g. bowtie2-build to create the Bowtie2 in-
dex) or alternatively with containerized software (using
-d/--docker flag in the refgenie build command).
We have also produced a complete containerized com-
puting environment capable of building all available
refgenie assets, which can be deployed with the bulker
environment manager18, making it easy to build any
refgenie assets without installing the required tools
natively.

Pulling assets

In addition to functions on local assets, the refgenie CLI
also contains additional commands that can interact
with remote assets: pull and listr:

• refgenie listr – lists available remote genomes
and assets

• refgenie pull – downloads a remote asset

With these commands, refgenie downloads a standard
asset with a single line of code:

refgenie pull hg38/ASSET

Tagging assets

The tag command allows users to tag assets with
unique identifiers. Tags may also be provided when
building or pulling assets to specify a version (e.g. build
hg38/ASSET:TAG). Once tagged, specific versions of

3· Refgenie, a reference genome manager · Databio · c©The Authors

assets can be accessed by tag. If no tag is specified,
refgenie will use the tag default, which is automatically
given to any built or pulled assets that do not specify
a tag. This makes tags an optional feature of refgenie
which are only necessary if a user desires multiple
versions of the same asset.

Seeking assets

Once the asset has been added to refgenie either via
pulling or building, the user can retrieve the path to it
with refgenie seek:

refgenie seek hg38/ASSET

This command returns the file path to the specified
asset for the specified genome. The seek command is
portable, eliminating the need to hard-code paths or
pass them as arguments. Consequently, in a pipeline or
other software that requires access to genome assembly
assets, the path to the local bowtie2 index asset can be
retrieved with a shell command:

bowtie2_index_path=\

$(refgenie seek hg38/bowtie2_index)

Refgenie server

The listr and pull functions require that the CLI in-
teract with a server. The CLI uses a configurable URL to
retrieve a remote archived tarball. After retrieving the
tarball, the CLI will unpack it into the appropriate folder
location and update the configuration file to provide ac-
cess to its path via refgenie seek.

To support this remote function, we have developed a
containerized, portable, open-source companion appli-
cation called refgenieserver. Many users of refgenie
will not have to be aware of the server application; how-
ever, interested users can use refgenie server to host
their own genome asset server. For example, a tool de-
veloper may wish to simplify use by hosting indexes for
common reference assemblies.

Running the refgenie server is simple for users who are
already familiar with refgenie. It reads the same genome
configuration file format as the CLI. In fact, refgenie
server operates on the same genome config file and asset
folders that that refgenie itself builds or downloads. The
server software comes with an archive command that
prepares a refgenie genome folder for serving. It com-
presses each asset into an individual tarball. This simple
system makes it easy for users to run a server using their
refgenie assets.

This server software leverages cutting-edge web technol-
ogy to provide high-concurrency service with minimal
compute resources (Fig. 3). We built refgenie server on
top of the FastAPI Python framework, which is a high

API Framework

ASGI Server

Refgenie
assets

Refgenie server
software

User interface

Fig.3: Server software stack. Archived refgenie assets are
mounted into a Docker container, along with the refgenie server
software, which is built using FastAPI and uvicorn. The container
can then be accessed via the web and API user interfaces.

genome_folder: /genomes/path
genome_server: http://...
config_version: 0.3
genomes:
 hg38:
 assets:
 bowtie2_index:
 asset_description: ...
 default_tag: default
 tags:
 default:
 asset_path: bowtie2_index
 asset_digest: 0f9217d44264ae2188
 seek_keys:
 bowtie2_index: .

Fig.4: Genome config file. Refgenie reads and writes a genome
configuration file in YAML format to keep track of available local
assets.

performance web framework for building APIs. FastAPI
automatically produces an API that complies with Ope-
nAPI 3.0 standards, which will allow other tools to dis-
cover and automatically use the API. It also includes a
self-documenting test interface so that users can see and
test the available API endpoints. Refgenie leverages the
Starlette development toolkit and the uvicorn server to
make use of the high-performance Asynchronous Server
Gateway Interface (ASGI) specification, which provides
asynchronous access to refgenie server.

Refgenie server is containerized and available on dock-
erhub, so that an interested user could run a server with
a single line of code:

docker run --rm -p 80:80 \

-v genomes_folder:/genomes rgimage \

refgenie -c /genomes/config.yaml serve

By mounting a refgenie ‘genomes’ folder into this con-
tainer, users get a fully functioning web interface and
RESTful API.

4· Refgenie, a reference genome manager · Databio · c©The Authors

Refgenconf package for genome configuration

Refgenie organizes assets by genome in the configura-
tion file, which is both computer-readable and human-
readable. In practice, users will not need to interact
with this file at all, as refgenie will handle both reading
and writing the file. However, users may edit the file if
they need a more complicated structure (such as storing
assets on different file systems, or adding assets manu-
ally). Together with the refgenie software, this simple
file makes the concept of reference genome assets com-
pletely portable. Full documentation for the configura-
tion file format can be found at refgenie.databio.org.

The configuration package, refgenconf, simply pro-
vides functions and data types to read and write items
listed in the genome configuration file. Under the hood,
the refgenie CLI itself uses refgenconf to interact with
the genome configuration and assets on disk. The
server software also relies on it to read, archive, and
serve assets. The refgenconf package also provides the
starting point for any third-party Python developers by
providing a fully functional Python application program-
ming interface (API) for interacting with refgenie assets.
For example, we use refgenconf in Python pipelines
we develop to make them aware of the genome assets
available in a given computing environment. Using this
approach, a pipeline need only be provided with an
assembly key, like ‘hg38’, and it can use refgenconf

to locate the correct path to any genome-related asset
necessary for the pipeline. This simplifies the process of
configuring pipelines and allows refgenie to be used
both by humans and computers.

The Refgenomes database

We designed the server software so that anyone could
easily run a custom server instance. We have also
deployed our own instance of refgenieserver at re-
fgenomes.databio.org, where we host pre-built genome
assets. Like any instance of refgenieserver, our
refgenomes database provides both a web interface and
a RESTful API to access individual assets we have made
available. Users may explore and download archived
indexes from the web interface or develop tools that
programmatically query the API.

The web interface provides a graphical listing of avail-
able genomes and assets, allowing users to browse the
site and download individual assets manually. In addi-
tion, refgenieserver provides API endpoints to serve lists
of available genomes and assets, as well as metadata
for the individual assets, including unique digests for
file integrity, file sizes, and archive content informa-
tion. Furthermore, the server provides endpoints to
download each asset individually. Endpoints include
the following: /genomes retrieves a list of available
genomes; /assets retrieves a list of all available assets;
/{genome}/assets/ retrieves a list of assets for a given

genome; and /{genome}/assets/{asset}/archive
retrieves the tarball for the specified asset. Complete
documentation is available at refgenomes.databio.org.
Because it provides a standard OpenAPI-compliant
RESTful API, our server will be useful not just for our
refgenie CLI, but for other tools that would benefit
from automated access to reference assembly assets and
indexes.

Our refgenieserver instance runs within DC/OS as a
containerized application. The server application makes
genome assets available through a web application con-
nected directly to a remote filesystem, with no addi-
tional database or infrastructure requirements. Integra-
tion and deployment is automated using GitHub, Travis-
CI, Docker Hub, and a custom deployment technique
made simple in DC/OS. Changes committed in code are
generally deployed to development or production ser-
vices within 1-3 minutes.

Genome provenance

One challenge with genome assembly assets is name
mismatches that lead to analysis conflicts. Because
refgenie identifiers are human-readable and user-
controlled, refgenie cannot rely on them to uniquely
identify assets. Furthermore, refgenie assets may be
either built or pulled from different servers, exacerbat-
ing the issue. This is an active area of research, with
several approaches under development related to this
problem, such as the NCBI Assembly database4, the
refget protocol for sequence identifiers19, and tximeta
checksums for RNA-seq data20. Refgenie currently
provides two resources to confirm the identity of pulled
and built assets: First, a unique digest for each asset,
and second, a building log file. Refgenie makes unique
asset digests available via both web interface and API,
allowing users to distinguish between two assets with
the same names but different digests. Furthermore,
because building refgenie assets is scripted, it is possible
to trace any asset back to its inputs. Refgenie server
provides API points to retrieve either the raw recipe
(/v2/asset/{genome}/{asset}/recipe) or the actual
log file (/v2/asset/{genome}/{asset}/log) for any
asset available on the server. For built assets, the build

command automatically produces a log file that records
the input files, software versions, and final digests for
any locally built assets. These resources make it possible
for users to uniquely identify and trace the provenance
of assets they either build or pull.

Comparison to existing tools
Refgenie fills a niche for which, to our knowledge,
there is no other competing software. The most similar
projects are Illumina’s iGenomes and Galaxy Data
Managers accompanied by Galaxy Tool Shed21,22, both
of which offer only a small part of what refgenie does

5· Refgenie, a reference genome manager · Databio · c©The Authors

https://refgenie.databio.org
http://refgenomes.databio.org
http://refgenomes.databio.org
http://refgenomes.databio.org

cu
st

om
 g

en
o

m
es

R
E

S
T

fu
l A

P
I f

or
 a

ss
e

ts

w
eb

 in
te

rf
ac

e
to

do
w

nl
o

ad
 a

ss
et

s
 py

th
on

 A
P

I

co
nt

ai
ne

ri
ze

d
se

rv
er

 s
of

tw
ar

e

m
od

ul
ar

 a
cc

es
s

to

in
di

vi
d

ua
la

ss
et

s

co
m

m
a

nd
-li

ne
 in

te
rf

ac
e

an
d

as
se

t m
an

ag
er

iGenomes

Refgenie

Data managers *

Fig.5: Feature comparison. iGenomes and Galaxy Data man-
agers also solve the problem of standardized reference genome
assets, but both lack the interactive features of refgenie. *Data
managers assets can be accessed individually, but not outside of
the Galaxy UI.

(Fig. 5). iGenomes provides a single archive download
of a standardized folder structure with pre-build assets
for pre-defined genomes. The Data Managers facilitate
building of assets but require a Galaxy server as well as
administrator access. Furthermore, there is no generic
way to retrieve the paths to the assets outside of the
Galaxy server UI. Some of refgenie’s utility is also
satisfied by individual tool websites that provide asset
downloads (e.g. bowtie2 indexes), but these provide no
shared structure or unified interface for access.

In contrast, refgenie provides a full-service manager that
unifies and transcends all of these available tools. Refge-
nie solves a series of related problems all in one conve-
nient package. It provides a unified web interface for all
assets, plus programmatic access to modular individual
assets via a RESTful API for metadata and assets. Ref-
genie also provides the ability to build assets for custom
genomes with a uniform interface that integrates seam-
lessly with downloaded assets. Refgenie is unique in pro-
viding a local asset manager that makes locating assets
portable, simplifying building pipelines that use these as-
sets. It is also the only easily deployable, independent,
containerized server application and Python API for ref-
erence genome assets. Thus, no existing software can
solve these problems specific to genome-related data re-
sources.

Conclusions and future directions
Reference genomes, indexes, annotations, and other
genome assets are integral to sequencing analysis
projects, and these genome-associated data resources
are growing rapidly11. Refgenie provides a full-service
management system that includes a convenient method
for downloading, building, sharing, and using these
resources. Refgenieserver is among a growing number
of API-oriented projects in the life sciences5,23,24. Ref-
genie will simplify management of reference assembly

assets for users and groups, facilitating data sharing and
software interoperability25.

Several new features under development will make re-
fgenie even more useful. Currently, refgenie is com-
pletely flexible with respect to genomes, but it is less
flexible with respect to assets, as only pre-scripted assets
can be built. A more flexible approach would allow re-
fgenie to accept custom recipes, allowing users to add
new asset types. Future development will address the
challenges of sharing recipes, provenance, and trust for
flexible assets. We are also improving the way refgenie
records and uses identifiers and relationships among as-
sets. For instance, by recording more detailed informa-
tion about what an asset contains and how it was gen-
erated, we open the possibility of delineating more fine-
grained compatibilies. For instance, while two indexes
would only be compatible if derived from the same set
of sequences, two annotation files could be compatible
on different sequences that shared a coordinate struc-
ture. Finally, we anticipate that future development will
extend refgenie to be able to accommodate ontology an-
notation for assets and genomes. Together, these im-
provements will enable more robust discovery of assets
and genomes as well as the relationships among them.

Software availability
Refgenie, refgenieserver, and refgenconf Python pack-
ages are all BSD2-licensed. Source code and documen-
tation can be found at refgenie.databio.org. Refgenie
is registered at SciCrunch (SCR 017574) and bio.tools
(biotoolsID:Refgenie).

References
1. Harrow, J. et al. GENCODE: The reference human genome annota-
tion for the ENCODE project. Genome Research 22, 1760–1774 (2012).

2. Pruitt, K. D., Tatusova, T., Brown, G. R. & Maglott, D. R. NCBI ref-
erence sequences (RefSeq): Current status, new features and genome
annotation policy. Nucleic Acids Research 40, D130–D135 (2011).

3. Church, D. M. et al. Modernizing reference genome assemblies.
PLoS Biology 9, e1001091 (2011).

4. Kitts, P. A. et al. Assembly: A resource for assembled genomes at
NCBI. Nucleic Acids Research 44, D73–D80 (2015).

5. Ruffier, M. et al. Ensembl core software resources: Storage and pro-
grammatic access for DNA sequence and genome annotation. Database
2017, (2017).

6. Sadakane, K. & Shibuya, T. Indexing huge genome sequences for
solving various problems. Genome Informatics 12, 175–183 (2001).

7. Hon, W.-K., Sadakane, K. & Sung, W.-K. Breaking a time-and-space
barrier in constructing full-text indices. SIAM Journal on Computing
38, 2162–2178 (2009).

8. Li, H. & Durbin, R. Fast and accurate short read alignment with
burrows-wheeler transform. Bioinformatics 25, 1754–60 (2009).

9. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with
bowtie 2. Nat. Methods 9, 357–359 (2012).

10. Illumina. IGenomes. Ready-to-use reference sequences and anno-
tations. support.illumina.com (2019).

6· Refgenie, a reference genome manager · Databio · c©The Authors

http://refgenie.databio.org

11. Richa Agarwala et al. Database resources of the national center for
biotechnology information. Nucleic Acids Research 46, D8–D13 (2018).

12. Zerbino, D. R., Wilder, S. P., Johnson, N., Juettemann, T. & Flicek,
P. R. The Ensembl Regulatory Build. Genome Biology 16, (2015).

13. Sheffield, N. C. & Bock, C. LOLA: Enrichment analysis for genomic
region sets and regulatory elements in R and bioconductor. Bioinfor-
matics 32, 587–589 (2016).

14. Krueger, F. & Andrews, S. R. Bismark: A flexible aligner and methy-
lation caller for bisulfite-seq applications. Bioinformatics 27, 1571–
1572 (2011).

15. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal
probabilistic RNA-seq quantification. Nature Biotechnology 34, 525–
527 (2016).

16. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced
aligner with low memory requirements. Nature Methods 12, 357–360
(2015).

17. Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioin-
formatics 29, 15–21 (2012).

18. Sheffield, N. C. Bulker: A multi-container environment manager.
OSF Preprints (2019). doi:10.31219/osf.io/natsj

19. GA4GH. Refget - reference sequence retrieval implementation.
samtools.github.io/ (2019).

20. Love, M. I. et al. Tximeta: Reference sequence check-
sums for provenance identification in RNA-seq. bioRxiv (2019).
doi:10.1101/777888

21. Blankenberg, D., Johnson, J. E., Taylor, J. & Nekrutenko, A. Wran-
gling galaxy’s reference data. Bioinformatics 30, 1917–1919 (2014).

22. Blankenberg, D. et al. Dissemination of scientific software with
galaxy ToolShed. Genome Biology 15, 403 (2014).

23. Yates, A. et al. The ensembl REST API: Ensembl data for any
language. Bioinformatics 31, 143–145 (2014).

24. Tarkowska, A. et al. Eleven quick tips to build a usable REST API
for life sciences. PLOS Computational Biology 14, e1006542 (2018).

25. Wilkinson, M. D. et al. The FAIR guiding principles for scientific
data management and stewardship. Sci. Data 3, 160018 (2016).

7· Refgenie, a reference genome manager · Databio · c©The Authors

https://doi.org/10.31219/osf.io/natsj
https://doi.org/10.1101/777888

Dear Editor

Thank you for the positive report. We have now completed a thorough response to all the
reviewer concerns. We just released a major new update of the refgenie software which in-
cludes a lot of new features, including some prompted by the reviewer comments as well as
other features we have been working on. Our paper is reorganized and re-written to address
some confusion raised by the reviewer comments. Notably, as requested, we added some dis-
cussion on provenance and trust and also added some new features to help users identify and
track their assets. We also added a future directions section and a comparison to galaxy tools.
Refgenie is now registered at SciCrunch (SCR 017574) and bio.tools (biotoolsID:Refgenie),
as now mentioned in the software availability section. This revision has improved refgenie and
the paper and we are excited to re-submit it for your consideration.

Sincerely,

Nathan Sheffield, PhD, on behalf of all co-authors
Assistant Professor, Center for Public Health Genomics, University of Virginia
www.databio.org
434-924-8278

Dear Dr. Sheffield,

Your manuscript “Refgenie: a reference genome resource manager” (GIGA-D-19-00289) has been as-
sessed by our reviewers. Based on these reports, and my own assessment as Editor, I am pleased to
inform you that it is potentially acceptable for publication in GigaScience, once you have carried out some
minor revisions suggested by our reviewers.

Their reports are below. I feel the reviewers (Andrew Yates, Katherine James, Bernie Pope and Christophe
Dessimoz) make useful suggestions that will improve the manuscript, including for example the suggestion
to discuss future directions in more detail. I also think that reviewer 3 raises an interesting point regarding
“provenance and trust” of genome assets that are shared via servers. Also, please compare your tool to
other (e.g. Galaxy) applications that are somewhat similar, as mentioned in the reviews.

In addition, please register any new software application in the bio.tools and SciCrunch.org databases to
receive RRID (Research Resource Identification Initiative ID) and biotoolsID identifiers, and include these
in your manuscript. This will facilitate tracking, reproducibility and re-use of your tool.

Please also make sure your revised manuscript is formatted according to our guidelines for “Technical
Notes”, including a “software availability” section.

Reviewer #1:

Recommendation: Accept with possible minor modifications

Review

The manuscript describes a single tool for the management and distribution of genome related assets
for use in downstream analysis, such as variant calling and RNA-seq quantification. Refgenie is both a
python binary for assets management on a local system and a web API for centralising and disseminating
said assets, which can be used independently of the refgenie binary. The tool is both novel and useful
capable of an immediate impact within any analysis workflow. As such I believe the manuscript should be
accepted and raise only a set of minor points detailed below.

Thank you!

Personal Cover Click here to access/download;Personal
Cover;response_to_reviewers.pdf

https://www.editorialmanager.com/giga/download.aspx?id=83978&guid=a1e9171f-44b5-4f9a-8073-0a81a6ffb1db&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=83978&guid=a1e9171f-44b5-4f9a-8073-0a81a6ffb1db&scheme=1

1) Comparison of refgenie to iGenomes

As stated in the manuscript, the iGenomes resource is one of the few resources which attempts to pro-
vide similar functionality. One aspect missed out of the comparison between the two is that iGenomes
covers a much wider number of genomes and annotation sets than the reference deployment at re-
fgenomes.databio.org.

Documentation at refgenie.databio.org has information on how a researcher could host iGenomes data
within refgenie but would the authors be open to mirroring the entire contents of iGenomes on their
reference implementation or to create a standard import module to help users import an entire iGenomes
file in a single command. I feel that would help drive adoption and remove the last point here iGenomes
still has an upper hand over refgenie.

To address this, we have created a new command line tool called import igenome that is in-
stalled along with refgenie. It adds all the assets enclosed in the genome archive downloaded
from the iGenomes website to the Refgenie local asset inventory. The required inputs are: *
-g: name of the genome that should be assigned to the assets, * -p: a path to the downloaded
archive or a directory (unarchived archive).

We have added detailed documentation as well.

usage:

$ import_igenome -h

usage: import_igenome [-h] -p PATH -g GENOME [-c CONFIG]

Integrates every asset from the downloaded iGenomes tarball/directory with

Refgenie asset management system

optional arguments:

-h, --help show this help message and exit

-p PATH, --path PATH path to the desired genome tarball or directory to

integrate

-g GENOME, --genome GENOME

name to be assigned to the selected genome

-c CONFIG, --config CONFIG

path to local genome configuration file. Optional if

’REFGENIE’ environment variable is set.

Example:

$ import_igenome -g staph -p Staphylococcus_aureus_NCTC_8325_NCBI_2006-02-13.tar.gz

Moved ’Staphylococcus_aureus_NCTC_8325_NCBI_2006-02-13.tar.gz’ to ’/Users/mstolarczyk/Desktop/testing/test_genomes/staph’

Added assets:

- staph/Chromosomes

- staph/BWAIndex

- staph/BowtieIndex

- staph/AbundantSequences

- staph/Bowtie2Index

- staph/WholeGenomeFasta

2) Lack of future directions and detailing of the limitations of the current refgenie implementation
The manuscript does not detail the areas and enhancements refgenie would look towards implementing
in the future. This for me would include a). how to easily inject new asset creation methods into the build
process e.g. if a new tool appeared that gained popularity how would that be supported b). steps refgenie
will take to ensure portability of genome identifiers across resources and ensuring that these resources
are the same.

Thank you for the suggestion. We have added 2 new sections to the manuscript. First, we
now have a “Genome provenance” section, where we describe how the current implementation
handles this. In fact, we have already made substantial progress here and the current version
goes partway toward solving this problem. In addition to this, we have also added a section
called “Future directions”, as requested. In this section we discuss a few problems that we are
actively working on and expect to identify new solutions in the future. Specifically, we outline
3 areas for future development: First, adding new assets, as you mention; second, dealing
more robustly with the genome provenance issues; and finally, adding in ontology metadata to
individual genomes and assets.

On this second point I should disclose that the corresponding author, Nathan Sheffield, has recently joined
a Global Alliance for Genomics and Health project called refget, which I head up. I know that the work
he is participating on will help to resolve the issue of genome identity across resources. Whilst I am not
looking for a namecheck here, I do feel the authors should flag this as a potential issue and that steps are
being taken to address it.

Overall though the manuscript is excellent and I congratulate the authors on their work.

Andrew Yates EMBL-EBI

Thanks, we are looking forward to continuing to explore how refgenie and refget can build on
one other to solve these problems! We have already started by integrating refget checksums
into the refgenie system, which can be useful to some users. We think that this idea is ready
for lots of future expansion and we aren’t yet making total use of the power this will eventually
enable.

Reviewer #2:
Review
Refgenie is a very useful tool that has several functions that are not provided by iGenomes. In particular,
it allows the use of custom genomes, which will become increasingly necessary as researchers work
with more diverse species following recent large genome sequencing projects, such as the International
Vertebrate Sequencing Project. Refgenie would also be of particular use to groups working with multiple
bacterial strains, where a large number of reference genomes may be in use.

The manuscript is extremely well written and describes the architecture and usage of Refgenie. I have
four minor comments:
1)
The results section introduces the three components of Refgenie: 1) command-line interface, 2) server,
3) configuration package but discusses them in the following subsections in a different order, and after the
“Genome configuration and asset organisation” section. From the readers point of view, reordering these
sections to describe these three components in this order would aid clarity. Indeed, the “command-line
interface” section is likely to be of most interest to potential users of Refgenie. Additionally, as a sugges-
tion only, combining the “Genome configuration and asset organisation” with “Refgenconf configuration
package” would also aid clarity.

Suggested amendments have been made to the text. Thank you for the suggestion!

2)

The “command line interface” section provides some example commands for a download of a bowtie2
index for hg38. For better understanding of refgenie usage, it would be useful if it also had similar real
world examples for the other local genome assets commands, for instance a build for a local resource.

An example of refgenie build command has been added to the text. In fact, we’ve greatly
expanded this small tutorial to try to make it easier to understand. There’s also now much
more thorough documentation on the website.

3)

In the same section, a real example of how the refgenie seek command is portable and eliminates the
need for hard coded paths would aid understanding of this concept.

An illustration of the refgenie seek command portability has been added to the text, and also
to the web documentation.

4)

In the section, “comparison with existing tools” the authors state that iGenomes is only available as a
single archive download. However, it should be noted that there are other sources for download of indexed
reference genomes. For instance pre-built indexes for model organisms are available individually from the
bowtie2 website and via the command line from the linked ftp site. Additionally, the Galaxy Tool Shed
provides data managers for index builds for multiple tools. This section should be expanded to highlight
the unique features provided by Refgenie over existing resources for genome assets.

The “Comparison to existing tools” section has been expanded and now references Galaxy
Tool Shed. Furthermore, we now use this section to highlight unique features of refgenie, as
suggested.

Reviewer #3:
Review

This paper describes Refgenie a system for managing and distributing genome reference files and their
associated assets (such as index files etc).

Managing genome references and their associated files is a common problem faced by bioinformaticians
and Refgenie provides a potentially useful service in this area. Refgenie is based on a server system for
storing and sharing reference data, and a command line interface for interacting with the server. A user
can request a copy of an existing reference resource from the server, or if that does not already exist, they
can supply a new FASTA file and ask Regenie to automatically create a new reference resource from that
file.

Sharing and managing genome reference data can be useful within research groups and organisations,
where consistency in analyses is important.

Overall this is a well written and tidy paper that describes a potentially useful tool that may be of interest
to the journal readership.

I have a few comments about the paper that I believe should be addressed before publication:

1)

An important issue with sharing and reusing genome assets is provenance and trust. I can foresee that
users will want some level of certification about who has supplied the genome and how it was processed.
For instance, perhaps genome assets could use public key cryptography to sign the data and provide a
level of certainty about its origin? In short, how can we trust the data that we get back from Refgenie?

We have addressed this concern with a new section called “genome provenance”. Here, we
discuss the way refgenie guarantees asset identity. Furthermore, we have also added a new
capability to the server, whereby users can see the exact log outputs generated for each asset.
This is one of the benefits of refgenie: assets are scripted, so we can trace exactly what they
are. Refgenie also records a checksum of the final built asset. The refgenie CLI uses this
checksum to confirm that the identity of a pulled asset matches the remote asset. We have
added a new section to the manuscript and documentation that describes this feature. We are
also working with the refget team to come up with universal ways to address this problem more
generally, in terms of not just assets but genome assemblies themselves – we have mentioned
this now in the future directions section.

2)

The authors suggest that there is little prior work for comparison, which is probably true. However,
I think one possible partial competitor is the CVMFS system used by the Galaxy project, which
has been used to share reference data resources, e.g. https://training.galaxyproject.org/training-
material/topics/admin/tutorials/cvmfs/tutorial.html. I think it is worth comparing Refgenie to CVMFS.

Thanks for the suggestion, we now reference the Galaxy Data Managers/Tool Shed
in the “Comparison to existing tools” section. To describe the relationship, although
Galaxy-CVMFS aims to address the same issue as Refgenie, its scope is more simi-
lar to the iGenomes project by Illumina. CVMFS is a distributed filesystem for sharing
read only data that is used by Galaxy software to provide a wide array of reference
genomes and assets required for analyses with the tool. A potential user can mount
and configure CVMFS locally using Ansible (introduces additional software requirement)
or by hand (a multi-step process). The resources are located in two parallel and self-
contained directories: /indexes and /managed. The former, which is manually curated,
stores the assets in a similar manner to Refgenie (genome/asset), but the structure is
not standard (see discrepancies in: http://datacache.galaxyproject.org/indexes/hg38/ and
http://datacache.galaxyproject.org/indexes/hg19/), which makes seamless reference genome
switching impossible in the pipelines that were built around this directory structure. Moreover,
there is no way to add assets for custom reference assemblies. The /managed directory
is created by Data Managers that use a combination of Tool Data Tables and .loc files to
keep track of the available reference assemblies and assets. A newly downloaded/built asset
can be subsequently used for the analyses on the Galaxy server and potentially outside,
in a custom pipeline. The notion of Data Managers adds flexibility to the genome assets
management but not only requires the Galaxy server installed but also a Galaxy Administrator
access. Furthermore, there is no generic way to retrieve the paths to the assets outside of the
Galaxy server UI.

In any case, it’s clear that there’s some similarity and we’ve added a discussion around this,
but refgenie is filling a niche that is not filled by the CVMFS system.

3)

On page 3 I found it slightly difficult to understand how the build command works. Where does it run?
How does it know what to run? Can the user control the versions of tools which are run?

The build command is more complex than the pull command because it requires additional
inputs. We have added detail and examples to make this more clear. At the moment, refgenie
is flexible with respect to genomes, but not with respect to assets to build, which are hard-
coded into refgenie. The build process runs on the user’s computer locally, so it uses whatever
versions are available in the user’s PATH. Refgenie uses a simple recipe system that describes
how assets are built. While an experienced user could relatively easily add a new asset recipe
(it’s simply a python dict in the code), or customize versions of tools, this is a clear area for

future development. We now present this in the discussion as a future direction to build a
custom recipe system. Furthermore, we have added more detailed information to the web
documentation.

4)

I’m not sure that “lightning fast” is an appropriate adjective for a scientific paper.

The expression has been corrected. This is how uvicorn self-describes their software, which
is how it got in there in the first place, but you’re right.

5)

On page 5 there is quite a lot of technical detail about the implementation of the refgenie server. I’m not
sure that this level of detail is required for the paper.

We have reduced the detail here. Our goal was just to demonstrate the robustness of the
server and describe an example for hardware others could use to deploy their own refge-
nieserver instance.

6)

Please use “Python” (proper noun) for the programming language instead of “python”.

The typos have been corrected.

7)

I tried to use Refgenie on the HPC system where I work. However, I ran into a problem:

$ python3 --version

Python 3.7.1

$ python3 -m venv refgenie_dev

$ source refgenie_dev/bin/activate

(refgenie_dev)$ refgenie

Traceback (most recent call last):

File "/home/foo/scratch/refgenie_dev/bin/refgenie", line 11, in <module>

load_entry_point(’refgenie==0.6.0’, ’console_scripts’, ’refgenie’)()

File "/home/foo/scratch/refgenie_dev/lib/python3.7/site-packages/refgenie/refgenie.py", line 387, in main

parser = logmuse.add_logging_options(build_argparser())

File "/home/foo/scratch/refgenie_dev/lib/python3.7/site-packages/refgenie/refgenie.py", line 98, in build_argparser

sps[BUILD_CMD], groups=None, args=["recover", "config", "new-start"])

File "/home/foo/scratch/refgenie_dev/lib/python3.7/site-packages/pypiper/utils.py", line 60, in add_pypiper_args

argument_groups=groups, arguments=args, use_all_args=all_args)

File "/home/foo/scratch/refgenie_dev/lib/python3.7/site-packages/pypiper/utils.py", line 808, in _determine_args

from logmuse import LOGGING_CLI_OPTDATA

I tried other versions of Python 3, but still had the same problem.

This was a temporary incompatibility introduced in one of refgenie dependencies, pypiper. It
was resolved after being reported on Aug 28th: https://github.com/databio/refgenie/issues/110
– sorry for the inconvenience.

We have also now released version 0.7.0 of refgenie. Please give this another try!

Reviewer #4:
Review

The submission present a system called “refgenie” to build, store, and share genomes and associated
indices, which are often required by downstream processes. The authors argue that this is a unique
niche, the closest related system being Illumina’s iGenomes.

I agree that the practical problem tackled is of high interest, and that the software proposed is a promising
solution to that problem. The manuscript is clearly written and nicely showcases the high-level features.
This is complemented by extensive documentation and tutorials, neat code, and a highly user friendly
installation procedure through PyPI.

In particular, the flexibility of supporting remote retrieval of data via CLI, API and a web interface makes
refgenie a compelling solution.

I have no major or minor reservation, just a few discretionary points to the authors.

1)

One alternative would be to use git lfs for the storage of genomic data. This could be added to the
comparison table (with appropriate amendements to the columns, if sensible)

It is true that git lfs can be used to distribute data that can be accessed via CLI; in fact there
are many technologies that could be used, such as an FTP server, Amazon S3, etc. These
systems are more like underlying technology upon which an API system like refgenie could
be built, rather than something that can compare against refgenie. In other words, we could
have built refgenie on something like git lfs, for the actual transfer of files. As such, we don’t
think the comparison to generic file distribution systems would be a meaningful comparison
for refgenie, which is more of a genomic data API and local file manager than a data storage
system.

2)

One nice additional feature would be to support the remote addition or update of genomes. For adoption
beyond single research labs, this may prove to be an important feature because in many environments, the
folks managing servers and those handling new genomes are likely to be in entirely different organisational
units.

Do you mean that end users should be able to push new assets into a running server in-
stance? This would be possible, but it would add some additional security and ownership
concerns. Our approach was to instead make it easy for anyone to host their own server, and
then make it easy to add additional genomes to a server instance. In fact, it would be relatively
simple with the current system to automate server updates using a deployment strategy based
on git hooks. By creating a list of genomes and assets to build for them as a git repository,
users could add genome identifiers to a spreadsheet in this git repository, which would then
be auto-deployed using travis to trigger a server update. The built-in archiving functionality
of the server software (see refgenieserver archive command) provides an effortless way
to add new servable archives. When new assets are built with refgenie build, execution of
refgenieserver archive command respects the existent archives and just adds the newly
created ones. Naturally, a subsequent execution of refgenieserver serve includes the re-
cent additions. This makes the incremental updates to the servable data straightforward. So,
in this environment, we would simply suggest that the “new genome managers” host a refgenie
server instance, and then allow access to a git repository for any authorized user to add as-
sets to the server. It seems that the security and storage issues that would be made possibly
by allowing anonymous upload to the server from any source would be more hassle than the
benefit is worth.

3)

Along the same line, I am not sure I agree with the assertion “remote-hosted assets are only practical
for common genomes and assets”. As a group leader, I actually much prefer if the assets are centrally
hosted than if they are scattered on the thumb drives of my lab members. . .

To us, these are two separate issues. Refgenie solves the scattered asset problem even
without a refgenieserver instance. For the use case you describe, what we do is we have
a single central local where we organize all of the lab’s assets. We can there download or
build whatever assets are needed by the lab. In fact, the new version of refgenie now includes
improved provision for mutli-user access. Now, refgenie will lock the configuration file so that
multiple users can use it simultaneously without worry of overwriting each others’ edits. We
recommend that a lab group set up a single refgenie genomes configuration file and archive,
and then simply point the REFGENIE environment variable in everyone’s environment to the
same file. This way, an entire lab group can easily share a common set of genome assets.
Not only that, but this organization would span research groups.

The point of our statement is that it is not feasible for someone hosting a refgenieserver in-
stance (my lab, for instance) to include every possible genome that everyone else could pos-
sibly want to use. Some subset of the assets we build could make sense to put into a refge-
nieserver instance, so that others can also use them; for these we could create a server. It
wouldn’t make sense to put everything in the server, because some of those assets are lab-
specific or rarely used, so it’s more practical for a local lab to just build them because only
1 or 2 labs need them. Otherwise, the refgenieserver would quickly require more resources
than can be covered by a single lab. We don’t expect to be able to download everything we
need, since some things might be really specific to a particular analysis and only 3 labs in the
world need those assets. In that case, we simply build them locally. So, there is no scatter; all
of the lab’s assets are locally hosted in a central location. This uses the asset management
capabilities of the CLI. We would build whatever custom genomes we need.

